Tsinghua Science and Technology


Steady-State Visual Evoked Potential (SSVEP), dynamic model, pre-stimulation, zero and pole analysis, brain-computer interface


This study explored methods for improving the performance of Steady-State Visual Evoked Potential (SSVEP)-based Brain-Computer Interfaces (BCI), and introduced a new analytical method to quantitatively analyze and reflect the characteristics of SSVEP. We focused on the effect of the pre-stimulation paradigm on the SSVEP dynamic models and the dynamic response process of SSVEP, and performed a comparative analysis of three pre-stimulus paradigms (black, gray, and white). Four dynamic models with different orders (second- and third-order) and with and without a zero point were used to fit the SSVEP envelope. The zero-pole analytical method was adopted to conduct quantitative analysis on the dynamic models, and the response characteristics of SSVEP were represented by zero-pole distribution characteristics. The results of this study indicated that the pre-stimulation paradigm affects the characteristics of SSVEP, and the dynamic models had good fitting abilities with SSVEPs under various types of pre-stimulation. Furthermore, the zero-pole characteristics of the models effectively characterize the damping coefficient, oscillation period, and other SSVEP characteristics. The comparison of zeros and poles indicated that the gray pre-stimulation condition corresponds to a lower damping coefficient, thus showing its potential to improve the performance of SSVEP-BCIs.


Tsinghua University Press