•  
  •  
 
Tsinghua Science and Technology

Keywords

energy Internet, mobile-edge computing, random access possibility, data compression

Abstract

Under the situations of energy dilemma, energy Internet has become one of the most important technologies in international academic and industrial areas. However, massive small data from users, which are too scattered and unsuitable for compression, can easily exhaust computational resources and lower random access possibility, thereby reducing system performance. Moreover, electric substations are sensitive to transmission latency of user data, such as controlling information. However, the traditional energy Internet usually could not meet requirements. Integrating mobile-edge computing makes energy Internet convenient for data acquisition, processing, management, and accessing. In this paper, we propose a novel framework for energy Internet to improve random access possibility and reduce transmission latency. This framework utilizes the local area network to collect data from users and makes conducting data compression for energy Internet possible. Simulation results show that this architecture can enhance random access possibility by a large margin and reduce transmission latency without extra energy consumption overhead.

Publisher

Tsinghua University Press

Share

COinS