Tsinghua Science and Technology


feature extraction, graph theory, network behavior, anomaly detection, Apache Spark


Extracting and analyzing network traffic feature is fundamental in the design and implementation of network behavior anomaly detection methods. The traditional network traffic feature method focuses on the statistical features of traffic volume. However, this approach is not sufficient to reflect the communication pattern features. A different approach is required to detect anomalous behaviors that do not exhibit traffic volume changes, such as low-intensity anomalous behaviors caused by Denial of Service/Distributed Denial of Service (DoS/DDoS) attacks, Internet worms and scanning, and BotNets. We propose an efficient traffic feature extraction architecture based on our proposed approach, which combines the benefit of traffic volume features and network communication pattern features. This method can detect low-intensity anomalous network behaviors and conventional traffic volume anomalies. We implemented our approach on Spark Streaming and validated our feature set using labelled real-world dataset collected from the Sichuan University campus network. Our results demonstrate that the traffic feature extraction approach is efficient in detecting both traffic variations and communication structure changes. Based on our evaluation of the MIT-DRAPA dataset, the same detection approach utilizes traffic volume features with detection precision of 82.3% and communication pattern features with detection precision of 89.9%. Our proposed feature set improves precision by 94%.


Tsinghua University Press