•  
  •  
 
Nano Research

Article Title

Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst

Authors

Gengtao Fu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China Materials Science and Engineering Program & Texas Materials Institute, the University of Texas at Austin, Austin, Texas 78712, USA
Zhenyuan Liu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Jingfei Zhang, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Jiayan Wu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Lin Xu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Dongmei Sun, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Jubing Zhang, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Yawen Tang, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Pei Chen, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China

Keywords

spinel MnCo2O4, carbon, porous nanosheets, electrocatalysis, oxygen reduction reaction

Abstract

Catalysts for the oxygen reduction reaction (ORR) play an important role in fuel cells. Alternative non-precious metal catalysts with comparable ORR activity to Pt-based catalysts are highly desirable for the development of fuel cells. In this work, we report for the first time a spinel MnCo2O4/C ORR catalyst consisting of uniform MnCo2O4 nanoparticles cross-linked with two-dimensional (2D) porous carbon nanosheets (abbreviated as porous MnCo2O4/C nanosheets), in which glucose is used as the carbon source and NaCl as the template. The obtained porous MnCo2O4/C nanosheets present the combined properties of an interconnected porous architecture and a large surface area (175.3 m2·g−1), as well as good electrical conductivity (1.15  102 S·cm−1). Thus, the as-prepared MnCo2O4/C nanosheets efficiently facilitate electrolyte diffusion and offer an expedite transport path for reactants and electrons during the ORR. As a result, the as-prepared porous MnCo2O4/C nanosheet catalyst exhibits enhanced ORR activity with a higher onset potential and current density than those of its counterparts, including pure MnCo2O4, carbon nanosheets, and Vulcan XC-72R carbon. More importantly, the porous MnCo2O4/C nanosheets exhibit a comparable electrocatalytic activity but superior stability and tolerance toward methanol crossover effects than a high-performance Pt/C catalyst in alkaline medium. The synthetic strategy outlined here can be extended to other nonprecious metal catalysts for application in electrochemical energy conversion.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS