Nano Research

Article Title

Optoelectronic devices based on two-dimensional transition metal dichalcogenides


transition metaldichalcogenides (TMDCs), optoelectronic device, molybdenum disulfide(MoS2), photodetector, light-emitting diode (LED)


In the past few years, two-dimensional (2D) transition metal dichalcogenide(TMDC) materials have attracted increasing attention of the research community,owing to their unique electronic and optical properties, ranging from thevalley–spin coupling to the indirect-to-direct bandgap transition when scalingthe materials from multi-layer to monolayer. These properties are appealing forthe development of novel electronic and optoelectronic devices with importantapplications in the broad fields of communication, computation, and healthcare.One of the key features of the TMDC family is the indirect-to-direct bandgaptransition that occurs when the material thickness decreases from multilayer tomonolayer, which is favorable for many photonic applications. TMDCs havealso demonstrated unprecedented flexibility and versatility for constructinga wide range of heterostructures with atomic-level control over their layerthickness that is also free of lattice mismatch issues. As a result, layered TMDCsin combination with other 2D materials have the potential for realizing novelhigh-performance optoelectronic devices over a broad operating spectral range.In this article, we review the recent progress in the synthesis of 2D TMDCs andoptoelectronic devices research. We also discuss the challenges facing the scalableapplications of the family of 2D materials and provide our perspective on theopportunities offered by these materials for future generations of nanophotonicstechnology.

Graphical Abstract


Tsinghua University Press