
Article Title
Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production
Keywords
silicon carbide, carbon, photocatalyst, co-catalyst free, hydrogen production
Abstract
Silicon carbide (SiC) has been considered a promising metal-free photocatalyst due to its unique photoelectrical properties and thermal/chemical stability. However, its performance suffers from the fast recombination of charge carriers. Herein, we report mesoporous SiC nanofibers with in situ embedded graphitic carbon (SiC NFs-Cx) synthesized via a one-step carbothermal reduction between electrospun carbon nanofibers and Si powders. In the absence of a noble metal co-catalyst, the hydrogen evolution efficiency of SiC NFs-Cx is significantly improved under both simulated solar light (180.2 μmol·g–1·h–1) and visible light irradiation (31.0 μmol·g–1·h–1) in high-pH solution. The efficient simultaneous separation of charge carriers plays a critical role in the high photocatalytic activity. The embedded carbon can swiftly transfer the photogenerated electrons and improve light absorption, whereas the additional hydroxyl anions (OH–) in highpH solution can accelerate the trapping of holes. Our results demonstrate that the production of SiC NFs-Cx, which contains exclusively earth-abundant elements, scaled up, and is environmentally friendly, has great potential for practical applications. This work may provide a new pathway for designing stable, lowcost, high efficiency, and co-catalyst-free photocatalysts.
Graphical Abstract
Publisher
Tsinghua University Press
Recommended Citation
Bing Wang,Yingde Wang,Yongpeng Lei,Nan Wu,Yanzi Gou,Cheng Han,Song Xie,Dong Fang, Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. NanoRes.2016, 9(3): 886–898