•  
  •  
 
Nano Research

Article Title

Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects

Authors

Shuo Cao, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Jing Tang, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Yue Sun, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Kai Peng, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Yunan Gao, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Yanhui Zhao, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Chenjiang Qian, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Sibai Sun, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Hassan Ali, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Yuting Shao, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Shiyao Wu, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Feilong Song, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
David A. Williams, Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge CB3 0HE, UK
Weidong Sheng, Department of Physics, Fudan University, Shanghai 200433, China
Kuijuan Jin, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Xiulai Xu, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Keywords

magnetophotoluminescence, InAs quantum dots, wetting layer, strong diamagnetic effects

Abstract

We report the direct observation of coupling between a single self-assembled InAs quantum dot and a wetting layer, based on strong diamagnetic shifts of many-body exciton states using magneto-photoluminescence spectroscopy. An extremely large positive diamagnetic coefficient is observed when an electron in the wetting layer combines with a hole in the quantum dot; the coefficient is nearly one order of magnitude larger than that of the exciton states confined in the quantum dots. Recombination of electrons with holes in a quantum dot of the coupled system leads to an unusual negative diamagnetic effect, which is five times stronger than that in a pure quantum dot system. This effect can be attributed to the expansion of the wavefunction of remaining electrons in the wetting layer or the spread of electrons in the excited states of the quantum dot to the wetting layer after recombination. In this case, the wavefunction extent of the final states in the quantum dot plane is much larger than that of the initial states because of the absence of holes in the quantum dot to attract electrons. The properties of emitted photons that depend on the large electron wavefunction extents in the wetting layer indicate that the coupling occurs between systems of different dimensionality, which is also verified from the results obtained by applying a magnetic field in different configurations. This study paves a new way to observe hybrid states with zero- and two-dimensional structures, which could be useful for investigating the Kondo physics and implementing spin-based solid-state quantum information processing.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS