•  
  •  
 
Nano Research

Article Title

Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors

Keywords

self-powered, ZnO, perovskite, pyro-phototronic effect, temperature dependence

Abstract

ABSTRACT Self-powered ZnO/perovskite heterostructured ultraviolet (UV) photodetectors (PDs) based on the pyro-phototronic effect have been recently reported as a promising solution for energy-efficient, ultrafast-response, and high-performance UV PDs. In this study, the temperature dependence of the pyro-phototronic effect on the photo-sensing performance of self-powered ZnO/perovskite heterostructured PDs was investigated. The current responses of these PDs to UV light were enhanced by 174.1% at 77 K and 28.7% at 300 K owing to the improved pyro-phototronic effect at low temperatures. The fundamentals of the pyro-phototronic effect were thoroughly studied by analyzing the chargetransfer process and the time constant of the current response of the PDs upon UV illumination. This work presents in-depth understandings about the pyrophototronic effect on the ZnO/perovskite heterostructure and provides guidance for the design and development of corresponding optoelectronics for ultrafast photo sensing, optothermal detection, and biocompatible optoelectronic probes.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS