Nano Research

Article Title

Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks


Ru, Pt, alloy, nanowire networks, electrocatalysis


ABSTRACT Recently, the synthesis of ultrathin nanostructures has attracted increasing interest because of their unique structure and properties. In this work, we report the synthesis of sub-2.0-nm Ru and composition-tunable RuPt nanowire networks using an environmentally friendly aqueous method. The structures were characterized using transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) spectroscopy. Moreover, the combined utilization of sodium n-dodecyl sulfate and potassium fluoride was determined to play a key role in the formation of these ultrathin nanostructures. The electrocatalytic properties of the sub-2.0-nm RuPt nanowire networks were investigated for methanol oxidation in an acidic medium. The nanostructures displayed composition-dependent properties, and compared with commercial Ru50Pt50/C, the as-synthesized Ru56Pt44 ultrathin nanowire network exhibited enhanced stability.

Graphical Abstract


Tsinghua University Press