Nano Research

Article Title

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices


anodes, lithium ion battery, hybrid, peapod structure, graphene


Cobalt oxides, such as Co3O4 and CoO, have received increasing attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent developments in the rational design and fabrication of various cobalt oxide-based nanomaterials and their lithium storage performance, including 1D nanowires/belts, 2D nanosheets, 3D hollow/hierarchical structures, hybrid nanostructures with carbon (amorphous carbon, carbon nanotubes and graphene) and mixed metal oxides. By focusing on the effects of their structure on their electrochemical performance, effective strategies for the fabrication of cobalt oxide/carbon hybrid nanostructures are highlighted. This review shows that by rational design, such cobalt-oxide-based nanomaterials are very promising as next generation LIB anodes.

Graphical Abstract


Tsinghua University Press