Nano Research

Article Title

An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms


gold nanoparticles, biomolecular imaging, noninvasive detection, diffusion reflection, fluorescence lifetime imaging, metal-enhanced fluorescence


In this study, we developed a highly sensitive dual-mode imaging system using gold nanoparticles (GNPs) conjugated to various fluorophores in solid phantoms. The system consists of fluorescence-lifetime imaging microscopy (FLIM) for surface imaging, diffusion reflection (DR) for deep-tissue imaging (up to 1 cm), and metal-enhanced fluorescence (MEF). We detected quenching in the fluorescent intensity (FI) for the conjugation of both gold nanospheres (GNS) and gold nanorods (GNRs) to Fluorescein, which has an excitation peak at a wavelength shorter than the surface plasmon resonance (SPR) of both types of GNPs. Enhanced FI was detected in conjugation to Rhodamine B (RhB) and Sulforhodamine B (SRB), both with excitation peaks in the SPR regions of the GNPs. The enhanced FI was detected both in solution and in solid phantoms by the FLIM measurements. DR measurements detected the presence of GNRs within the solid phantoms by recording the dropped rates of light scattering in wavelengths corresponding to the absorption spectra of the GNRs. With the inclusion of MEF, this promising dual-mode imaging technique enables efficient and sensitive molecular and functional imaging.

Graphical Abstract


Tsinghua University Press