•  
  •  
 
Nano Research

Article Title

Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties

Keywords

silver nanoparticles, iron nanoparticles, laser ablation, laser ablation synthesis in solution (LASiS) nanoalloys

Abstract

ABSTRACT A frontier topic in nanotechnology is the realization of multifunctional nanoparticles (NPs) via the appropriate combination of different elements of the periodic table. The coexistence of Fe and Ag in the same nanostructure, for instance, is interesting for nanophotonics, nanomedicine, and catalysis. However, alloying of Fe and Ag is inhibited for thermodynamic reasons. Here, we describe the synthesis of Fe-doped Ag NPs via laser ablation in liquid solution, bypassing thermodynamics constraints. These NPs have an innovative structure consisting of a scaffold of face-centered cubic metal Ag alternating with disordered Ag–Fe alloy domains, all arranged in a truffle-like morphology. The Fe–Ag NPs exhibit the plasmonic properties of Ag and the magnetic response of Fe-containing phases, and the surface of the Fe–Ag NPs can be functionalized in one step with thiolated molecules. Taking advantage of the multiple properties of Fe–Ag NPs, the magnetophoretic amplification of plasmonic properties is demonstrated with proof-of-concept surface-enhanced Raman scattering and photothermal heating experiments. The synthetic approach is of general applicability and virtually permits the preparation of a large variety of multi-element NPs in one step.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS