•  
  •  
 
Nano Research

Article Title

Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts

Authors

Gengtao Fu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Qian Zhang, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Jiayan Wu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Dongmei Sun, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Lin Xu, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Yawen Tang, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Yu Chen, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, China

Keywords

platinum nanocrystals, cube, self-assembly, arginine, electrocatalysis

Abstract

Controllable self-assembly of noble metal nanocrystals is of broad interest for the development of highly active electrocatalysts. Here we report an efficient arginine-mediated hydrothermal approach for the high-yield synthesis of cube-like Pt nanoassemblies (Pt-CNAs) with porous cavities and rough surfaces based on the self-assembly of zero dimensional Pt nanocrystals. In this process, arginine acts as the reductant, structure directing agent, and linker between adjacent nanocrystals. Interestingly, the Pt-CNAs exhibit single-crystal structures with dominant {100} facets, as evidenced by X-ray diffraction. Based on electrocatalytic studies, the as-synthesized Pt-CNAs exhibit improved electrocatalytic activity as well as good stability and CO tolerance in the methanol oxidation reaction. The Pt-CNA’s good performance is attributed to their unique morphology and surface structure. We believe that the synthetic strategy outlined here could be extended to other rationally designed monometallic or bimetallic nanoassemblies for use in high performance fuel cells.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS