Nano Research

Article Title

Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer’s disease


Alzheimer disease, WS2 nanosheets, Aβ inhibitors, photothermal treatment, Aβ aggregation, near infrared (NIR)


Polymerization of amyloid-β peptide (Aβ) into amyloid fibrils is a critical step in the pathogenesis of Alzheimer’s disease (AD). Inhibition of Aβ aggregation and destabilization of preformed Aβ fibrils have promising effects against AD and have been used in clinic trials. Herein, we demonstrate, for the first time, the application of WS2 nanosheets, to not only effectively inhibit Aβ aggregation, but also dissociate preformed Aβ aggregates upon near infrared (NIR) irradiation. Additionally, the biocompatible WS2 nanosheets possess the ability to cross the blood-brain barrier (BBB) to overcome the limitations of most previously reported Aβ inhibitors. Through van der Waals and electrostatic interactions between Aβ40 and WS2, Aβ40 monomers can be selectively adsorbed on the surface of the nanosheet to inhibit the Aβ40 aggregation process. Intriguingly, the unique high NIR absorption property of WS2 enables amyloid aggregates to be dissolved upon NIR irradiation. These results will promote biological applications of WS2 and provide new insight into the design of multifunctional nanomaterials for AD treatment.

Graphical Abstract


Tsinghua University Press