
Article Title
TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries
Keywords
titanium dioxide, carbon nanofibers, areal capacity, lithium ion batteries
Abstract
ABSTRACT The inherently low electrical conductivity of TiO2-based electrodes as well as the high electrical resistance between an electrode and a current collector represents a major obstacle to their use as an anode for lithium ion batteries. In this study, we report on high-density TiO2 nanotubes (NTs) branched onto a carbon nanofiber (CNF) “tree” that provide a low resistance current path between the current collector and the TiO2 NTs. Compared to a TiO2 NT array grown directly on the current collector, the branched TiO2 NTs tree, coupled with the CNF electrode, exhibited ~10 times higher areal energy density and excellent rate capability (discharge capacity of ~150 mA•h•g–1 at a current density of 1,000 mA•g–1). Based on the detailed experimental results and associated theoretical analysis, we demonstrate that the introduction of CNFs with direct electric contact with the current collector enables a significant increase in areal capacity (mA•h•cm–2) as well as excellent rate capability.
Graphical Abstract
Publisher
Tsinghua University Press
Recommended Citation
Taeseup Song,Hyungkyu Han,Heechae Choi,Jung Woo Lee,Hyunjung Park,Sangkyu Lee,Won Il Park,Seungchul Kim,Li Liu,Ungyu Paik, TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. NanoRes.2014, 7(4): 491–501