Nano Research

Article Title

Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia


graphene, SiC, Intercalation, Doping, STM


ABSTRACT Surface functionalization of epitaxial graphene overlayers on 6H-SiC(0001) has been attempted through thermal reactions in NH3. X-ray photoelectron spectroscopy and micro-region low energy electron diffraction results show that a significant amount of N is present at the NH3-treated graphene surface, which results in strong band bending at the SiC surface as well as decoupling of the graphene overlayers from the substrate. The majority of the surface N species can be removed by annealing in vacuum up to 850 °C, weakening the surface band bending and resuming the strong coupling of graphene with the SiC surface. The desorbed N atoms can be attributed to the intercalated species between graphene and SiC. Low temperature scanning tunneling spectroscopy and density functional theory simulations confirm the presence of N dopants in the graphene lattice, which are in the form of graphitic substitution and can be stable above 850 °C. This is the first report of simultaneous N intercalation and N doping of epitaxial graphene overlayers on SiC, and it may be employed to alter the surface physical and chemical properties of epitaxial graphene overlayers.

Graphical Abstract


Tsinghua University Press