Home > NANO-RESEARCH > Vol. 6 (2013) > No. 5

Article Title
Highly defective graphene: A key prototype of two-dimensional Anderson insulators
Keywords
graphene, electronic transport, Anderson insulators, localization
Abstract
ABSTRACT Electronic structure and transport properties of highly defective two-dimensional (2D) sp2 graphene are investigated theoretically. Classical molecular dynamics are used to generate large graphene planes containing a considerable amount of defects. Then, a tight-binding Hamiltonian validated by ab initio calculations is constructed in order to compute quantum transport within a real-space order-N Kubo–Greenwood approach. In contrast to pristine graphene, the highly defective sp2 carbon sheets exhibit a high density of states at the charge neutrality point raising challenging questions concerning the electronic transport of associated charge carriers. The analysis of the electronic wavepacket dynamics actually reveals extremely strong multiple scattering effects giving rise to mean free paths as low as 1 nm and localization phenomena. Consequently, highly defective graphene is envisioned as a remarkable prototype of 2D Anderson insulating materials.
Graphical Abstract
Publisher
Tsinghua University Press
Recommended Citation
Aurélien Lherbier,Stephan Roche,Oscar A. Restrepo,Yann-Michel Niquet,Arnaud Delcorte,Jean-Christophe Charlier, Highly defective graphene: A key prototype of two-dimensional Anderson insulators. NanoRes.2013, 6(5): 326–334