Nano Research

Article Title

Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes


Carbon nanotube (CNT), atomic force microscopy (AFM), tip–nanotube interaction, diameter


ABSTRACT We examine the effect of van der Waals (vdW) interactions between atomic force microscope tips and individual carbon nanotubes (CNTs) supported on SiO2. Molecular dynamics (MD) simulations reveal how CNTs deform during atomic force microscopy (AFM) measurement, irrespective of the AFM tip material. The apparent height of a single- (double-) walled CNT can be used to estimate its diameter up to ~2 nm (~3 nm), but for larger diameters the CNT cross-section is no longer circular. Our simulations were compared against CNT dimensions obtained from AFM measurements and resonant Raman spectroscopy, with good agreement for the smaller CNT diameters. In general, AFM measurements of large-diameter CNTs must be interpreted with care, but the reliability of the approach is improved if knowledge of the number of CNT walls is available, or if additional verification (e.g., by optical techniques) can be obtained.

Graphical Abstract


Tsinghua University Press