
Article Title
Charge transfer and retention in directly coupled Au-CdSe nanohybrids
Keywords
Hybrid nanocrystals, time-resolved photoluminescence, charge transfer, charge retention
Abstract
The energy and charge transfer dynamics of directly coupled Au–CdSe hybrid nanocrystals have been studied using time-resolved photoluminescence (PL) techniques. The PL of such nanohybrids was found to be quenched dramatically compared to that of both CdSe quantum dots and mixtures of CdSe quantum dots with Au nanoparticles. Fluorescence decay curves of the Au–CdSe nanohybrids show three distinct decay channels with the fastest one associated with the transfer of electrons from the CdSe portion to the Au portion. The holes on the CdSe portion created by such charge transfer were then quickly taken away by the solution, while the electrons on the Au portion slowly leaked into the solution as well, thus serving as a reductant for redox reactions. Using a model reaction based on the reduction of methylene blue by the leaking electrons, our photocatalytic experiments indicate that the electrons can be temporarily retained in the Au portion (most likely at the Au–capping agent interface) for a dramatically long timescale, up to 100 min. Finally, by merging all of the observations in the time-resolved PL measurements, we were able to figure out a relatively complete picture of charge transfer and retention in the Au–CdSe nanohybrids. This picture is expected to guide researchers in designing modern photocatalysts and solar cells constructed from nanoscale metal–semiconductor hybrids.
Graphical Abstract
Publisher
Tsinghua University Press
Recommended Citation
Bo Gao,Yue Lin,Sijie Wei,Jie Zeng,Yuan Liao,Liuguo Chen,David Goldfeld,Xiaoping Wang,Yi Luo,Zhenchao Dong,Jianguo Hou, Charge transfer and retention in directly coupled Au-CdSe nanohybrids. NanoRes.2012, 5(2): 88–98