•  
  •  
 
Nano Research

Article Title

Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors

Keywords

Te nanowires, Seebeck effect, thermoelectric nanogenerator, self-powered temperature sensor

Abstract

We have developed a flexible thermoelectric nanogenerator (TENG) that is based on a Te-nanowire/poly(3-hexyl thiophene) (P3HT) polymer composite as the thermoelectric material with a positive Seebeck coefficient of 285 μV/K. A linear relationship between the output voltage of TENG and the temperature difference across the device was observed. Under a temperature difference of 55 K, two TENGs can provide an output voltage of 38 mV in serial connection, or a current density exceeding 32 nA/mm2 in parallel connection. We demonstrated that the flexible TENG can be used as a wearable energy harvester by using human body temperature as the energy source. In addition, the TENG can also be used as a self-powered temperature sensor with a response time of 17 s and a reset time of 9 s. The detection sensitivity of the sensor can reach 0.15 K in ambient atmosphere.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS