•  
  •  
 
Nano Research

Article Title

High-quality single-layer graphene via reparative reduction of graphene oxide

Authors

Boya Dai, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Lei Fu, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Lei Liao, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Nan Liu, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Kai Yan, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
Yongsheng Chen, College of Chemistry, Nankai University, Tianjin, 300071, China
Zhongfan Liu, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China

Keywords

Graphene, graphene oxide, reparative reduction, transparent flexible electrode

Abstract

Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350–410 S/cm (whilst retaining >96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS