Nano Research

Article Title

A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties


ZnO:Co, visible light irradiation, surface photovoltage, photocatalysis


ABSTRACT Highly photocatalytically active cobalt-doped ZnO (ZnO:Co) nanorods have been prepared by a facile hydrothermal process. X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering and UV–vis diffuse reflectance spectroscopy confirmed that the dopant ions substitute for some of the lattice zinc ions, and furthermore, that Co2+ and Co3+ ions coexist. The as-prepared ZnO:Co samples have an extended light absorption range compared with pure ZnO and showed highly efficient photocatalytic activity, only requiring 60 min to decompose ~93% of alizarin red dye under visible light irradiation (λ > 420 nm). The photophysical mechanism of the visible photocatalytic activity was investigated with the help of surface photovoltage spectroscopy. The results indicated that a strong electronic interaction between the Co and ZnO was present, and that the incorporation of Co promoted the charge separation and enhanced the charge transfer ability and, at the same time, effectively inhibited the recombination of photogenerated charge carriers in ZnO, resulting in high visible light photocatalytic activity.

Graphical Abstract


Tsinghua University Press