Nano Research

Article Title

Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses


Gold-silver nanostructures, core-shell morphology, surface plasmon resonance, antimony glass, metal-enhanced rare earth fl uorescence


The nano era demands the synthesis of new nanostructured materials, if possible by simplified techniques, with remarkable properties and versatile applications. Here, we demonstrate a new single-step reproducible melt-quench methodology to fabricate core-shell bimetallic (Au0 Ag0) nanoparticles (28 89 nm) embedded glasses (dielectrics) by the use of a new reducing glass matrix, K2O B2O3 Sb2O3 (KBS) without applying any external reducing agent or multiple processing steps. The surface plasmon resonance (SPR) band of these nanocomposites embedded in KBS glass is tunable in the range 554-681 nm. More remarkably, taking advantage of the selective reduction capability of Sb2O3, this single-step methodology is used to fabricate inter-metallic: rare-earth ions co-embedded (Au Ag:Sm3+) dielectric (glass)-based-dnanocomposites and study the effect of enhanced local fi eld on the red upconversion fl uorescence of Sm3+ ions at 636 nm. The enhancement is found to be about 2 folds. This single-step in-situ selective reduction approach can be used to fabricate a variety of hybrid-nanocomposite devices for laser based applications (see supplementary information).

Graphical Abstract


Tsinghua University Press