Nano Research

Article Title

Synthesis of single-walled carbon nanotubes by induction thermal plasma


Single-walled carbon nanotubes (SWCNTs), large-scale continuous synthesis, radio frequency (RF) induction thermal plasma, optimization, numerical modeling


The production of high quality single-walled carbon nanotubes (SWCNTs) on a bulk scale has been an issue of considerable interest. Recently, it has been demonstrated that high quality SWCNTs can be continuously synthesized on large scale by using induction thermal plasma technology. In this process, the high energy density of the thermal plasma is employed to generate dense vapor-phase precursors for the synthesis of SWCNTs. With the current reactor system, a carbon soot product which contains approximately 40 wt% of SWCNTs can be continuously synthesized at the high production rate of ~100 g/h. In this article, our recent research efforts to achieve major advances in this technology are presented. Firstly, the processing parameters involved are examined systematically in order to evaluate their individual in?uences on the SWCNT synthesis. Based on these results, the appropriate operating conditions of the induction thermal plasma process for an effective synthesis of SWCNTs are discussed. A characterization study has also been performed on the SWCNTs produced under the optimum processing conditions. Finally, a mathematical model of the process currently under development is described. The model will help us to better understand the synthesis of SWCNTs in the induction plasma process.

Graphical Abstract


Tsinghua University Press