•  
  •  
 
Nano Research

Article Title

Inter-facet composition modulation of III-nitride nanowires over pyramid textured Si substrates by stationary molecular beam epitaxy

Authors

Peng Wang, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
Hedong Chen, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Hao Wang, Department of Physics, Xiamen University, Xiamen 361005, China
Dan Wang, Analysis & Testing Center, South China Normal University, Guangzhou 510631, China
Changkun Song, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Xingyu Wang, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Hongjie Yin, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Lujia Rao, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Guofu Zhou, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China;Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China
Richard Nötzel, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China;National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China

Keywords

pyramid textured Si substrate, composition modulation, III-nitride, nanowire, molecular beam epitaxy, stationary growth, cross talk

Abstract

InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid facets, inducing a distinct inter-facet modulation of the In content of the InGaN NWs, which is verified by spatial element distribution analysis. The resulting multi-wavelength emission is confirmed by photoluminescence (PL) and cathodoluminescence (CL). Pure GaN phase formation dominates on certain facets, which is attributed to extreme local growth conditions, such as low active N flux. On the same facets, InGaN NWs exhibit a morphology change close to the pyramid ridge, indicating inter-facet atom migration. This cross-talk effect due to inter-facet atom migration is verified by a decrease of the inter-facet In content modulation amplitude with shrinking pyramid size. A detailed analysis of the In content variation across individual pyramid facets and element distribution line profiles reveals that the cross-talk effect originates mainly from the inter-facet atom migration over the convex pyramid ridge facet boundaries rather than the concave base line facet boundaries. This is understood by first-principles calculations showing that the pyramid baseline facet boundary acts as an energy barrier for atom migration, which is much higher than that of the ridge facet boundary. The influence of the growth temperature on the inter-facet In content modulation is also presented. This work gives deep insight into the composition modulation for the realization of multi-color light-emitting devices based on the monolithic growth of InGaN NWs on pyramid textured Si substrates.

Publisher

Tsinghua University Press

Share

COinS