•  
  •  
 
Nano Research

Article Title

Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries

Authors

Qiulong Li, College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China;National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
Qichong Zhang, Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China
Zhengyu Zhou, Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China;Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
Wenbin Gong, Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China
Chenglong Liu, Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China;Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China
Yongbao Feng, College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing 211816, China
Guo Hong, Institute of Applied Physics and Materials Engineering, University of Macau. Avenida da Universidade, Taipa, Macau SAR 999078, China;Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
Yagang Yao, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Sciences, Suzhou 215123, China;Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang 330200, China

Keywords

Zn-doped Co3O4, aqueous rechargeable Co//Zn battery, fiber-shaped, high-capacity, high-rate

Abstract

Neutral aqueous rechargeable Co3O4//Zn batteries with high-output voltage and outstanding cycling stability have yielded new insights into wearable energy-storage devices. To meet the increasing demand for a means of powering wearable and portable devices, the development of a high-performance fiber-shaped Co//Zn battery would be highly desirable. However, the intrinsically poor conductivity of Co3O4 significantly restricts the application of these high-capacity and high-rate aqueous rechargeable battery. Encouragingly, density functional theory (DFT) calculations demonstrate that the substitution of Zn for Co3+ leads to an insulator-metal transition in the Zn-doped Co3O4 (Zn-Co3O4). In this study, we used metallic Zn-Co3O4 nanowire arrays (NWAs) as a novel binder-free cathode to successfully fabricate an all-solid-state fiber-shaped aqueous rechargeable (AFAR) Co//Zn battery. The resulting fiber-shaped Co//Zn battery takes advantage of the enhanced conductivity, increased capacity, and improved rate capability of Zn-Co3O4 NWAs to yield a remarkable capacity of 1.25 mAh·cm-2 at a current density of 0.5 mA·cm-2, extraordinary rate capability (60.8% capacity retention at a high current density of 20 mA·cm-2) and an admirable energy density of 772.6 mWh·cm-3. Thus, the successful construction of Zn-Co3O4 NWAs provides valuable insights into the design of high-capacity and high-rate cathode materials for aqueous rechargeable high-voltage batteries.

Publisher

Tsinghua University Press

Share

COinS