•  
  •  
 
Nano Research

Article Title

Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction

Authors

Yezhou Hu, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Yun Lu, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Xueru Zhao, Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Tao Shen, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Tonghui Zhao, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Mingxing Gong, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Ke Chen, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Chenglong Lai, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Jian Zhang, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Huolin L. Xin, Department of Physics and Astronomy, University of California, Irvine, 92697, CA, USA
Deli Wang, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Keywords

palladium, carbon encapsulation strategy, ordered intermetallic nanoparticles, oxygen reduction reaction (ORR), Zn-air battery

Abstract

Developing highly efficient non-Pt catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction (ORR). Herein, a facile and efficient strategy is demonstrated to prepare N-doped carbon encapsulated ordered Pd-Fe intermetallic (O-Pd-Fe@NC/C) nanoparticles via a one-step thermal annealing method. The obtained O-Pd-Fe@NC/C nanoparticles show enhanced ORR activity, durability and anti-poisoning capacity in both acid and alkaline medium. When O-Pd-Fe@NC/C serving as cathode catalyst for Zn-air battery, it exhibits higher voltage platform and superior cycling performance with respect to the Zn-air battery based on the mixture of Pt/C and Ir/C catalysts. The enhanced electrocatalytic performance can be ascribed to the formation of face-centered tetragonal (fct) Pd-Fe nanoparticles, the protective action of the N-doped carbon layer and the interface confinement effect between them. The in situ formed N-doped carbon shell not only restrains the Pd-Fe ordered intermetallics from aggregating effectively during the thermal annealing process, but also provides a strong anchoring effect to avoid the detachment of Pd-Fe nanoparticles from the carbon support during the potential cycling. This facile carbon encapsulation strategy may also be extended to the preparation of a wide variety of N-doped carbon encapsulated intermetallic compounds for fuel cell application.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS