Nano Research

Article Title

Plasmonics of regular shape particles, a simple group theory approach


surface plasmon resonance, group theory, hexagon, disk, sphere, photoemission electron microscopy (PEEM)


A simple hand calculation method based on group theory is proposed to predict the near field maps of finite metallic nanoparticles (MNP) of canonical geometries: prism, cube, hexagon, disk, sphere, etc. corresponding to low order localized surface plasmon resonance excitations. In this article, we report the principles of the group theory approach and demonstrate, through several examples, the general character of the group theory method which can be applied to describe the plasmonic response of particles of finite or infinite symmetry point groups. Experimental validation is achieved by collection of high-resolution subwavelength nearfield maps by photoemission electron microscopy (PEEM) on a representative set of Au colloidal particles exhibiting either finite (hexagon) or infinite (disk, sphere) symmetry point groups.

Graphical Abstract


Tsinghua University Press