•  
  •  
 
Nano Research

Article Title

Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution

Authors

Mengqiu Huang, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Weiwei Liu, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
Lei Wang, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Jiwei Liu, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Guanyu Chen, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Wenbin You, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Jie Zhang, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
Lijun Yuan, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
Xuefeng Zhang, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
Renchao Che, Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China

Keywords

metal-organic framework, oxygen evolution reaction, ultrathin nanosheet arrays, cobaltous hydroxide, charge transfer

Abstract

Developing efficient and low-cost electrocatalysts for oxygen evolution reaction (OER) with high electrochemical activity and durability for diverse renewable and sustainable energy technologies remains challenging. Herein, an ultrasonic-assisted and coordination modulation strategy is developed to construct sandwich-like metal-organic framework (MOF) derived hydroxide nanosheet (NS) arrays/graphene oxide (GO) composite via one-step self-transformation route. Inducing from unsteady state, the dodecahedral ZIF-67 with Co2+ in tetrahedral coordination auto-converts into defect-rich ultrathin layered hydroxides with the interlayered ion NO3−. The self-transforming α-Co(OH)2/GO nanosheet arrays from ZIF-67 (Co(OH)2-GNS) change the coordination mode of Co2+ and bring about the exposure of more metal active sites, thereby enhancing the spatial utilization ratio within the framework. As monometal-based electrocatalyst, the optimized Co(OH)2-GNS exhibits remarkable OER catalytic performance evidenced by a low overpotential of 259 mV to achieve a current density of 10 mA·cm−2 in alkaline medium, even exceeding commercial RuO2. During the oxygen evolution process, electron migration can be accelerated by the interfacial/in-plane charge polarization and local electric field, corroborated by the off-axis electron holography. Density functional theory (DFT) calculations further studied the collaboration between ultrathin Co(OH)2 NS and GO, which leads to lower energy barriers of intermediate products and greatly promotes electrocatalytic property.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS