•  
  •  
 
Nano Research

Article Title

Printable elastic silver nanowire-based conductor for washable electronic textiles

Authors

Hong-Wu Zhu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Huai-Ling Gao, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Hao-Yu Zhao, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Jin Ge, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Bi-Cheng Hu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Jin Huang, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Shu-Hong Yu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Keywords

printable elastic conductor, electronic textiles, washability, phase inversion, silver nanowires

Abstract

Printable elastic conductors promote the wide application of consumable electronic textiles (e-textiles) for pervasive healthcare monitoring and wearable computation. To assure a clean appearance, the e-textiles require a washing process to clean up the dirt after daily use. Thus, it is crucial to develop low-cost printable elastic conductors with strong adhesion to the textiles. Here, we report a composite elastic conductor based on Ag nanowires (NWs) and polyurethane elastomer. The composite could be dispersed into ink and easily printed onto textiles. One-step print could form robust conductive coatings without sealing on the textiles. Interestingly, the regional concentration of Ag NWs within the polyurethane matrix was observed during phase inversion, endowing the elastic conductor with a low percolation threshold of 0.12 vol.% and high conductivity of 3,668 S·cm−1. Thanks to the high adhesion of the elastic conductors, the resulted e-textiles could withstand repeated stretching, folding, and machine washing (20 times) without obvious performance decay, which reveals its potential application in consumable e-textiles.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS