•  
  •  
 
Nano Research

Article Title

Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation

Authors

Yanqiu Du, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Cheng Jiang, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Li Song, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Bin Gao, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Hao Gong, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Wei Xia, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Lei Sheng, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Tao Wang, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China
Jianping He, College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

Keywords

nitrogen reduction reaction, ammonia, WO3, oxygen vacancies, surface state

Abstract

Realizing the reduction of N2 to NH3 at low temperature and pressure is always the unremitting pursuit of scientists and then electrochemical nitrogen reduction reaction offers an intriguing alternative. Here, we develop a feasible way, gamma irradiation, for constructing defective structure on the surface of WO3 nanosheets, which is clearly observed at the atomic scale by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The abundant oxygen vacancies ensure WO3 nanosheets with a Faradaic efficiency of 23% at −0.3 V vs. RHE. Moreover, we start from the regulation of the surface state to suppress proton availability towards hydrogen evolution reaction (HER) on the active site and thus boost the selectivity of nitrogen reduction.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS