•  
  •  
 
Nano Research

Article Title

Towards maximized utilization of iridium for the acidic oxygen evolution reaction

Authors

Marc Ledendecker, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Simon Geiger, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Katharina Hengge, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Joohyun Lim, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Serhiy Cherevko, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
Andrea M. Mingers, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Daniel Ghl, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Guilherme V. Fortunato, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany Institute of Chemistry, Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
Daniel Jalalpoor, Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Ferdi Schüth, Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Christina Scheu, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Karl J. J. Mayrhofer, Department of Interface Chemistry and Surface Engineering, Nanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany Department of Chemical and Biological Engineering, Friedrich-Alexander-Universitt Erlangen-Nürnberg, 91058 Erlangen, Germany

Keywords

oxygen evolution reaction, liquid atomic layer deposition, catalysis, iridium, core-shell nanoparticles

Abstract

The reduction in noble metal content for efficient oxygen evolution catalysis is a crucial aspect towards the large scale commercialisation of polymer electrolyte membrane electrolyzers. Since catalytic stability and activity are inversely related, long service lifetime still demands large amounts of low-abundant and expensive iridium. In this manuscript we elaborate on the concept of maximizing the utilisation of iridium for the oxygen evolution reaction. By combining different tin oxide based support materials with liquid atomic layer deposition of iridium oxide, new possibilities are opened up to grow thin layers of iridium oxide with tuneable noble metal amounts. In-situ, time- and potential-resolved dissolution experiments reveal how the stability of the substrate and the catalyst layer thickness directly affect the activity and stability of deposited iridium oxide. Based on our results, we elaborate on strategies how to obtain stable and active catalysts with maximized iridium utilisation for the oxygen evolution reaction and demonstrate how the activity and durability can be tailored correspondingly. Our results highlight the potential of utilizing thin noble metal films with earth abundant support materials for future catalytic applications in the energy sector.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS