•  
  •  
 
Nano Research

Article Title

Mass-production of flexible and transparent Te-Au nylon SERS substrate with excellent mechanical stability

Authors

Wei-Ran Huang, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Cheng-Xin Yu, School of Physics and Materials Science, Anhui University, Hefei 230601, China
Yi-Ruo Lu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Hassan Muhammad, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Jin-Long Wang, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Jian-Wei Liu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Shu-Hong Yu, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Keywords

mass-production, flexible, transparent, surface-enhanced Raman scattering, gold nanoparticles

Abstract

In the past two decades, the field of surface-enhanced Raman scattering (SERS) has flourished and many rational strategies have been reported for the successful construction of SERS substrates. However, it still lacks the mass-production and programmability for practical applications with arbitrary configurations, and it is highly desirable to develop SERS substrates with strong signal enhancement, large-scale surface area, easy fabrication and low cost. Herein, we demonstrate a large-area fabrication (1.5 m × 5 m) of low-cost (18.8 dollars per square meter), highly sensitive, flexible and transparent SERS substrate by a simple solution process. The high sensitivity of SERS substrate using 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as probe molecules is strongly dependent on the density and diameter of gold nanoparticles (NPs) on the surface of nylon mesh with the best enhancement factor (EF) of 9.17 × 1010 and the SERS detection limit of DTTCI molecules is as low as 10−14 M which shows no obvious degradation even after 10,000 cycles of fatigue test, high temperature (above than 160 °C) and acid-alkali treatment, indicating their excellent stability for the performance in all climates.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS