•  
  •  
 
Nano Research

Article Title

Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions

Authors

Guangzhuang Sun, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Bo Li, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Jia Li, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Zhengwei Zhang, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Huifang Ma, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Peng Chen, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Bei Zhao, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Ruixia Wu, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Weiqi Dang, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Xiangdong Yang, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Xuwan Tang, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Chen Dai, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Ziwei Huang, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Yuan Liu, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Xidong Duan, State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Xiangfeng Duan, Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA

Keywords

van der Waals epitaxy, Sb2Se3/WS2 heterostructures, rectification behavior, photovoltaic effect, photoswitch

Abstract

The mixed-dimensional integration of two-dimensional (2D) materials with non-2D materials can give rise to prominent advances in performance or function. To date, the mixed-dimensional one-dimensional (1D)/2D heterostructures have been fabricated using various physical assembly approaches. However, direct epitaxial growth method which has notable advantages in preparing large-scale products and obtaining perfect interfaces is rarely investigated. Herein, we demonstrate for the first time the direct synthesis of the 1D/2D mixeddimensional heterostructures by sequential vapor-phase growth of Sb2Se3 nanowires on WS2 monolayers. X-ray diffraction (XRD) pattern and Raman spectrum confirm the composition of the Sb2Se3/WS2 heterostructures. Transmission electron microscope (TEM) measurement demonstrates high quality of the heterostructures. Electrical transport characterization reveals that Sb2Se3 nanowire exhibits p-type characteristic and that WS2 monolayer exhibits n-type behavior, and that the p-n diode from 1D/2D mixed-dimensional Sb2Se3/WS2 heterostructure possesses obvious current rectification behavior. Optoelectronic measurements of the heterostructures show apparent photovoltaic response with an open-circuit voltage of 0.19 V, photoresponsivity of 1.51 A/W (Vds = 5 V) and fast response time of less than 8 ms. The van der Waals epitaxial growth mode of Sb2Se3 nanowires on WS2 monolayers is verified by stripping the Sb2Se3 nanowire from the heterostructures using tape. Together, the direct van der Waals epitaxy opens a facile pathway to 1D/2D mixed-dimensional heterostructures for functional electronic and optoelectronic devices.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS