•  
  •  
 
Nano Research

Article Title

Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization

Authors

Xiaolei Yuan, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Xiaojing Jiang, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Muhan Cao, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Lei Chen, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Kaiqi Nie, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Yong Zhang, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Yong Xu, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Xuhui Sun, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Yanguang Li, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Qiao Zhang, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren’ai Road, Suzhou 215123, China

Keywords

intermetallics, nanoplates, core–shell structure, methanol oxidation reaction, ethanol oxidation reaction

Abstract

The development of Pt-based core/shell nanoparticles represents an emerging class of electrocatalysts for fuel cells, such as methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Here, we present a one-pot synthesis approach to prepare hexagonal PtBi/Pt core/shell nanostructure composed of an intermetallic Pt1Bi1 core and an ultrathin Pt shell with well-defined shape, size, and composition. The structure and the synergistic effect among different components enhanced their MOR and EOR performance. The optimized Pt2Bi nanoplates exhibit excellent mass activities in both MOR (4,820 mA·mgPt–1) and EOR (5,950 mA·mgPt–1) conducted in alkaline media, which are 6.15 times and 8.63 times higher than those of commercial Pt/C, respectively. Pt2Bi nanoplates also show superior operation durability to commercial Pt/C. This work may inspire the rational design and synthesis of Pt-based nanoparticles with improved performance for fuel cells and other applications.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS