•  
  •  
 
Nano Research

Article Title

Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage

Authors

Chen Lu, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Zhenzhu Li, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Zhou Xia, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Haina Ci, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China Beijing Graphene Institute (BGI), Beijing 100095, China
Jingsheng Cai, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Yingze Song, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Lianghao Yu, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Wanjian Yin, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Shixue Dou, Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
Jingyu Sun, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China Beijing Graphene Institute (BGI), Beijing 100095, China
Zhongfan Liu, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China Beijing Graphene Institute (BGI), Beijing 100095, China Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Keywords

SnSe, nitrogen-doped graphene, plasma-enhanced chemical vapor deposition, conductivity, sodium-ion storage

Abstract

Tin-based compounds are deemed as suitable anode candidates affording promising sodium-ion storages for rechargeable batteries and hybrid capacitors. However, synergistically tailoring the electrical conductivity and structural stability of tin-based anodes to attain durable sodium-ion storages remains challenging to date for its practical applications. Herein, metal-organic framework (MOF) derived SnSe/C wrapped within nitrogen-doped graphene (NG@SnSe/C) is designed targeting durable sodium-ion storage. NG@SnSe/C possesses favorable electrical conductivity and structure stability due to the “inner” carbon framework from the MOF thermal treatment and “outer” graphitic cage from the direct chemical vapor deposition synthesis. Consequently, NG@SnSe/C electrode can obtain a high reversible capacity of 650 mAh·g−1 at 0.05 A·g−1, a favorable rate performance of 287.8 mAh·g−1 at 5 A·g−1 and a superior cycle stability with a negligible capacity decay of 0.016% per cycle over 3,200 cycles at 0.4 A·g−1. Theoretical calculations reveal that the nitrogen-doping in graphene can stabilize the NG@SnSe/C structure and improve the electrical conductivity. The reversible Na-ion storage mechanism of SnSe is further investigated by in-situ X-ray diffraction/ex-situ transmission electron microscopy. Furthermore, assembled sodium-ion hybrid capacitor full-cells comprising our NG@SnSe/C anode and an active carbon cathode harvest a high energy/power density of 115.5 Wh·kg−1/5,742 W·kg−1, holding promise for next-generation energy storages.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS