•  
  •  
 
Nano Research

Article Title

Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers

Authors

Janardan Dagar, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Sergio Castro-Hermosa, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Matteo Gasbarri, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Alessandro L. Palma, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Lucio Cina, Cicci Research srl, via Giordania 227, Grosseto 58100, Italy
Fabio Matteocci, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Emanuele Calabrò, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
Aldo Di Carlo, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy Department of semiconductor electronics and device physics, National University of Science and Technology “MISiS”, Leninskii pr.4, Moscow 119049, Russia
Thomas M. Brown, CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy

Keywords

SnO2/mesoporous-TiO2 (meso-TiO2) electron transport layer, flexible perovskite solar cell, flexible perovskite module, laser patterning, indoor light harvesting

Abstract

ABSTRACT Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm2 (estimated PCE of 12.8%) and 19.2 μW/cm2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm2 under an illumination of 1 sun.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS