•  
  •  
 
Nano Research

Article Title

Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2,4-dichlorophenol

Authors

Yanduo Liu, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Ning Sun, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Shuangying Chen, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Rui Yan, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Peng Li, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Yang Qu, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Yichun Qu, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China
Liqiang Jing, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, China

Keywords

mesoporous molecular sieve, titanium phosphate, coupling SnO2, charge separation, photocatalysis, 2, 4-dichlorophenol, decomposition

Abstract

ABSTRACT It is essential to develop a cheap, recyclable, and efficient photocatalyst to help degrade pollutants contaminating the environment. Herein, mesoporous molecular sieve titanium phosphate (MMS-TiP) was used as an efficient nano-photocatalyst to degrade 2,4-dichlorophenol (2,4-DCP) and to oxidize CO. The catalyst was successfully synthesized by a simple and convenient hydrothermal method in the presence of a tri-block copolymer surfactant. Exceptional photoactivity of the optimized MMS-TiP mainly depends on its porous structure, with a large surface area by means of O2 temperature-programmed desorption curves and fluorescence spectra related to the amounts of produced hydroxyl radical. Interestingly, the photocatalytic activity of the prepared MMS-TiP could be greatly improved by coupling with nanocrystalline SnO2. This is likely due to the increase in the lifetime and separation of photogenerated charges by transferring electrons to SnO2 and was observed by steady-state surface photovoltage spectra and time-resolved surface photovoltage responses. The SnO2-coupled MMS-TiP exhibits better photocatalytic performance for 2,4-DCP degradation and better self-settlement than those of the commercial catalyst P25 TiO2. Moreover, it was confirmed by radical-trapping experiments that ·O2– is the main activated species for the photocatalytic degradation of 2,4-DCP, and is photogenerated by electron transfer from MMS-TiP to SnO2. Furthermore, the main intermediates in the degradation of 2,4-DCP, like parachlorophenol superoxide and 1,2-benzenediol superoxide radicals, were detected, and a possible decomposition pathway related to ·O2– attack is proposed. These experimental results provide new strategies for developing a recyclable molecular sievebased nano-photocatalyst with high photocatalytic activity for environmental remediation.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS