•  
  •  
 
Nano Research

Article Title

Strain-induced band gap engineering in layered TiS3

Authors

Robert Biele, Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco, 20018 San Sebastián, Spain
Eduardo Flores, Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Jose Ramón Ares, Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Carlos Sanchez, Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain Instituto de Ciencia de Materiales “Nicolás Cabrera”, Campus de Cantoblanco, 28049 Madrid, Spain
Isabel J. Ferrer, Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain Instituto de Ciencia de Materiales “Nicolás Cabrera”, Campus de Cantoblanco, 28049 Madrid, Spain
Gabino Rubio-Bollinger, Instituto de Ciencia de Materiales “Nicolás Cabrera”, Campus de Cantoblanco, 28049 Madrid, Spain Dpto. de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Andres Castellanos-Gomez, Instituto de Ciencia de los Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
Roberto D’Agosta, Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco, 20018 San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

Keywords

band gap engineering, titanium trisulfide, 2-D materials, strain

Abstract

ABSTRACT By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS