•  
  •  
 
Nano Research

Article Title

Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors

Authors

Ye Wu, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Yi Wei, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Yong Huang, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Fei Cao, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Dejian Yu, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Xiaoming Li, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Haibo Zeng, Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Keywords

inorganic perovskite, bipolar resistive switching, nonvolatile, ZnO capping, low power consumption

Abstract

ABSTRACT The rapid development of information technology has led to an urgent need for devices with fast information storage and processing, a high density, and low energy consumption. Memristors are considered to be next-generation memory devices with all of the aforementioned advantages. Recently, organometallic halide perovskites were reported to be promising active materials for memristors, although they have poor stability and mediocre performance. Herein, we report for the first time the fabrication of stable and high-performance memristors based on inorganic halide perovskite (CsPbBr3, CPB). The devices have electric field-induced bipolar resistive switching (ReS) and memory behaviors with a large on/off ratio (>105), low working voltage (104 s), and high environmental stability, which are achieved via ZnO capping within the devices. Such a design can be adapted to various devices. Additionally, the heterojunction between the CPB and ZnO endows the devices with a light-induced ReS effect of more than 103 with a rapid response speed (<1 ms), which enables us to tune the resistance state by changing the light and electric field simultaneously. Such multifunctional devices achieved by the combination of information storage and processing abilities have potential applications for future computing that transcends traditional architectures.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS