•  
  •  
 
Nano Research

Article Title

Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation

Authors

Muhammad Waqas, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
Yanze Wei, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science & Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing 100083, China
Dan Mao, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China
Jian Qi, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China
Yu Yang, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China
Bao Wang, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China
Dan Wang, State Key Laboratory of Biochemical Engineering, CAS Center for Excellence in Nanoscience, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China

Keywords

multi-shelled hollow microsphere, titanium oxide, pseudo-brookite, heterostructure, photocatalytic water oxidation

Abstract

ABSTRACT There remains a pressing challenge in the fabrication of superior photocatalysts for light-driven water oxidation. Here, we designed and fabricated heterostructured TiO2/Fe2TiO5 hollow microspheres with single-, double-, closed-double-, triple-, and core–shell structures and different Fe/Ti molar ratios using a facile sequential templating approach. The closed-double-shelled TiO2/Fe2TiO5 hollow microspheres with 35% Fe exhibited the highest oxygen evolution reaction rate up to 375 μmol·g−1·h−1 and good stability for 5 h. The high performance can be attributed to the closed-double shell, which had more reactive sites and greater light-harvesting ability, self-supported thin shells with short charge-transfer paths, and a favorable staggered band alignment between the TiO2 and Fe2TiO5.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS