•  
  •  
 
Nano Research

Article Title

Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon

Keywords

atomic layer deposition, cobalt oxide, polydopamine, oxygen reduction reaction

Abstract

ABSTRACT The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some costefficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform CoxOy nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the CoxOy nanoparticles and their detaching from the substrate.

Graphical Abstract

Publisher

Tsinghua University Press

Share

COinS