Authors
Ziyao WANG, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Yangai LIU, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Jian CHEN, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Minghao FANG, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Zhaohui HUANG, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Lefu MEI, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
Keywords
tunable, phosphor, Ba0.79Al10.9O17.14, luminescence, self-reduction
Abstract
A series of luminescent Ba0.79Al10.9O17.14:xEu (x = 0.005-0.12) phosphors were prepared by high-temperature solid-state reaction in air atmosphere. The coexistence of Eu2+ and Eu3+ was observed and verified by photoluminescence (PL) and photoluminescence excitation (PLE) spectra, X-ray photoelectron spectra (XPS), and diffuse reflection spectra. The band emission peaking at 430 nm was assigned to 4F65D-4F7 transition of Eu2+, and another four emissions peaking at 589, 619, 655, and 704 nm were attributed to 4F-4F transitions of 5D0-7FJ (J = 1, 2, 3, 4) of Eu3+. The related mechanism of self-reduction was discussed in detail. The color of the Ba0.79Al10.9O17.14:xEu phosphors could be shifted from blue (0.23, 0.10) to red (0.42, 0.27) by doping Li+ ions, and the temperature dependence properties were investigated.
Publisher
Tsinghua University Press
Recommended Citation
Ziyao WANG, Yangai LIU, Jian CHEN et al. Color tunable Ba0.79Al10.9O17.14:xEu phosphor prepared in air via valence state control. Journal of Advanced Ceramics 2017, 6(2): 81-89.
DOWNLOADS
Since October 27, 2020
COinS