Journal of Advanced Ceramics


ceramic matrix composite, brake materials, abrasion, braking testing


A novel braking material, C/C–ZrB2–ZrC–SiC carbon fibre-reinforced hybrid ceramic matrix composite, was prepared by chemical vapour infiltration and polymeric precursor infiltration and pyrolysis. Investigation of the microstructure of C/C–ZrB2–ZrC–SiC composite showed the homogenous dispersion of three-phase ceramic as the matrix. The frictional properties of the hybrid C/C–ZrB2–ZrC–SiC ceramic matrix composite were measured by a disk-on-disk type dynamometer under dry and wet conditions to simulate the normal landing state of aircraft brake disk friction pairs. C/C–ZrB2–ZrC–SiC ceramic matrix composite has a higher and more stable friction coefficient under wet condition than under dry condition, indicating that the composite has better performance compared with C/C or C/C–SiC braking materials.


Tsinghua University Press