Journal of Advanced Ceramics


silicon nitride, anisotropic, carbothermal reduction nitridation (CRN), wood, nanowhisker arrays


Inspired by the transport behavior of water and ions through the aligned channels in trees, we demonstrate a facile, scalable approach for constructing biomorphic cellular Si3N4 ceramic frameworks with well-aligned nanowhisker arrays on the surface of directionally aligned microchannel alignments. Through a facile Y(NO3)3 solution infiltration into wood-derived carbon preforms and subsequent heat treatment, we can faultlessly duplicate the anisotropic wood architectures into free-standing bulk porous Si3N4 ceramics. Firstly, α-Si3N4 microchannels were synthesized on the surface of CB-templates via carbothermal reduction nitridation (CRN). And then, homogeneous distributed Y-Si-O-N liquid phase on the walls of microchannel facilitated the anisotropic β-Si3N4 grain growth to form nanowhisker arrays. The dense aligned microchannels with low-tortuosity enable excellent load carrying capacity and thermal conduction through the entire materials. As a result, the porous Si3N4 ceramics exhibited an outstanding thermal conductivity (TC, kR ≈ 6.26 W·m-1·K-1), a superior flexural strength (σL ≈ 29.4 MPa), and a relative high anisotropic ratio of TC (kR/kL = 4.1). The orientation dependence of the microstructure-property relations may offer a promising perspective for the fabrication of multifunctional ceramics.