•  
  •  
 
Journal of Advanced Ceramics

Authors

Zhipeng LI, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Dong-Xu LI, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Zong-Yang SHEN, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Xiaojun ZENG, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Fusheng SONG, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Wenqin LUO, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Xingcai WANG, Chengdu Hongke Electronic Technology Co., Ltd., Chengdu 610000, China
Zhumei WANG, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
Yueming LI, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

Keywords

relaxor ferroelectrics, energy storage ceramics, ceramic capacitor, Bi, defect engineering

Abstract

Lead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density (Wrec) especially at low electric field condition. To address this challenge, we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions, in which Ba0.105Na0.325Sr0.245-1.5x0.5xBi0.325+xTiO3 (BNS0.245-1.5x0.5xB0.325+xT, x = 0, 0.02, 0.04, 0.06, and 0.08) lead-free ceramics are selected as the representative. The BNS0.245-1.5x0.5xB0.325+xT ceramics are prepared by using pressureless solid-state sintering and achieve large Wrec (1.8 J/cm3) at a low electric field (@110 kV/cm) when x = 0.06. The value of 1.8 J/cm3 is super high as compared to all other Wrec in lead-free bulk ceramics under a relatively low electric field (< 160 kV/cm). Furthermore, a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40-350 ℃ is also obtained in BNS0.245-1.5x0.5xB0.325+xT (x = 0.06) ceramics. The excellent performances can be attributed to the A-site defect engineering, which can reduce remnant polarization (Pr) and improve the thermal evolution of polar nanoregions (PNRs). This work confirms that the BNS0.245-1.5x0.5xB0.325+xT (x = 0.06) ceramics are desirable for advanced pulsed power capacitors, and will push the development of a series of Bi0.5Na0.5TiO3 (BNT)-based ceramics with high Wrec and high-temperature stability.

Share

COinS