
Article Title
Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors
Keywords
multilayer ceramic capacitors (MLCCs), lead-free dielectric ceramics, energy storage, high power density
Abstract
The growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density, high capacitance density, high voltage and frequency, low weight, high-temperature operability, and environmental friendliness. Compared with their electrolytic and film counterparts, energy-storage multilayer ceramic capacitors (MLCCs) stand out for their extremely low equivalent series resistance and equivalent series inductance, high current handling capability, and high-temperature stability. These characteristics are important for applications including fast-switching third-generation wide-bandgap semiconductors in electric vehicles, 5G base stations, clean energy generation, and smart grids. There have been numerous reports on state-of-the-art MLCC energy-storage solutions. However, lead-free capacitors generally have a low-energy density, and high-energy density capacitors frequently contain lead, which is a key issue that hinders their broad application. In this review, we present perspectives and challenges for lead-free energy-storage MLCCs. Initially, the energy-storage mechanism and device characterization are introduced; then, dielectric ceramics for energy-storage applications with aspects of composition and structural optimization are summarized. Progress on state-of-the-art energy-storage MLCCs is discussed after elaboration of the fabrication process and structural design of the electrode. Emerging applications of energy-storage MLCCs are then discussed in terms of advanced pulsed power sources and high-density power converters from a theoretical and technological point of view. Finally, the challenges and future prospects for industrialization of lab-scale lead-free energy-storage MLCCs are discussed.
Recommended Citation
ZHAO, Peiyao; CAI, Ziming; WU, Longwen; ZHU, Chaoqiong; LI, Longtu; and WANG, Xiaohui
(2021)
"Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors,"
Journal of Advanced Ceramics: Vol. 10:
Iss.
6, Article 16.
DOI: https://doi.org/10.1007/s40145-021-0516-8
Available at:
https://dc.tsinghuajournals.com/journal-of-advanced-ceramics/vol10/iss6/16