Journal of Advanced Ceramics


plasma spraying, Li4Ti5O12 (LTO) electrode, ceramic/polymer composite electrolyte, electrochemical cycle, quasi-solid-state lithium battery


A quasi-solid-state lithium battery is assembled by plasma sprayed amorphous Li4Ti5O12 (LTO) electrode and ceramic/polymer composite electrolyte with a little liquid electrolyte (10 μL/cm2) to provide the outstanding electrochemical stability and better normal interface contact. Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscopy (STEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectrometer (EDS) were used to analyze the structural evolution and performance of plasma sprayed amorphous LTO electrode and ceramic/polymer composite electrolyte before and after electrochemical experiments. By comparing the electrochemical performance of the amorphous LTO electrode and the traditional LTO electrode, the electrochemical behavior of different electrodes is studied. The results show that plasma spraying can prepare an amorphous LTO electrode coating of about 8 μm. After 200 electrochemical cycles, the structure of the electrode evolved, and the inside of the electrode fractured and cracks expanded, because of recrystallization at the interface between the rich fluorine compounds and the amorphous LTO electrode. Similarly, the ceramic/polymer composite electrolyte has undergone structural evolution after 200 test cycles. The electrochemical cycle results show that the cycle stability, capacity retention rate, coulomb efficiency, and internal impedance of amorphous LTO electrode are better than traditional LTO electrode. This innovative and facile quasi-solid-state strategy is aimed to promote the intrinsic safety and stability of working lithium battery, shedding light on the development of next-generation high-performance solid-state lithium batteries.


Tsinghua University Press