high-speed train, friction mechanisms, brake pads, abrasives


To understand the effect of abrasives on increasing friction in Cu-based metallic pads under different braking speeds, pad materials with two typical abrasives, titanium carbide (TiC) and alumina (Al2O3), were produced and tested using a scale dynamometer under various initial braking speeds (IBS). The results showed that at IBS lower than 250 km/h, both TiC and Al2O3 particles acted as hard points and exhibited similar friction-increasing behavior, where the increase in friction was not only enhanced as IBS increased, but also enhanced by increasing the volume fraction of the abrasives. However, at higher IBS, the friction increase was limited by the bonding behavior between the matrix and abrasives. Under these conditions, the composite containing TiC showed a better friction-increasing effect and wear resistance than the composite containing Al2O3 because of its superior particle-matrix bonding and coefficient of thermal expansion (CTE) compatibility. Because of the poor interface bonding between the matrix and Al2O3, a transition phenomenon exists in the Al2O3-reinforced composite, in which the friction-increasing effect diminished when IBS exceeded a certain value.


Tsinghua University Press

Included in

Tribology Commons