abrasive-free polishing, material removal rate, initiator, hard disk substrate


The effect of tert-butyl hydroperoxide-sodium pyrosulfite ((CH3)3COOH-Na2S2O5) as an initiator system in H2O2-based slurry was investigated for the abrasive-free polishing (AFP) of a hard disk substrate. The polishing results show that the H2O2-C4H10O2-Na2S2O5 slurry exhibits a material removal rate (MRR) that is nearly 5 times higher than that of the H2O2 slurry in the AFP of the hard disk substrate. In addition, the surface polished by the slurry containing the initiator exhibits a lower surface roughness and has fewer nano-asperity peaks than that of the H2O2 slurry. Further, we investigate the polishing mechanism of H2O2-C4H10O2-Na2S2O5 slurry. Electron spin-resonance spectroscopy and auger electron spectrometer analyses show that the oxidizing ability of the H2O2-C4H10O2-Na2S2O5 slurry is much greater than that of the H2O2 slurry. The results of potentiodynamic polarization measurements show that the hard disk substrate in the H2O2-C4H10O2-Na2S2O5 slurry can be rapidly etched, and electrochemical impedance spectroscopy analysis indicates that the oxide film of the hard disk substrate formed in the H2O2-C4H10O2-Na2S2O5 slurry may be loose, and can be removed easily during polishing. The better oxidizing and etching ability of H2O2-C4H10O2-Na2S2O5 slurry leads to a higher MRR in AFP for hard disk substrates.


Tsinghua University Press